Indian Statistical Institute, Bangalore

B. Math (Hons.) Third Year

Second Semester - Complex Analysis

Midterm Exam Maximum marks: 30 Date: 18th February 2025 Duration: 2 hours

Answer any five, each question carries 6 marks

- 1. (a) Prove that a holomorphic function is continuous (Marks 2).
 - (b) If Ω is a region and $f \in H(\Omega)$ with f' = 0 on Ω , prove that f is constant.
- 2. (a) Determine all entire functions whose every power series representation has at least one coefficient zero.
 - (b) If $f, g \in H(\mathbb{C})$ with fg = 0, prove that f = 0 or g = 0 (Marks: 2).
- 3. Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ have radius of convergence R. Then prove that f is holomorphic and $f'(z) = \sum_{n=1}^{\infty} n a_n z^{n-1}$ on |z| < R.
- 4. (a) If P is a non-constant polynomial, then each connected component of {z ∈ C | |P(z)| < c} contains a zero of P for any c > 0 (Marks: 4).
 (b) Find Ind_γ(z) for any closed path γ in a convex region Ω and z ∉ Ω.
- 5. (a) If u is the real part of an analytic function, prove that u_{xx} + u_{yy} = 0.
 (b) Determine analytic functions f so that |f|² is the real part of some analytic function (Marks: 4).
- 6. (a) Prove that the derivative of an injective analytic function nowhere vanishes.
 (b) Prove that ∫_γ zⁿ = 0 for any closed path γ and n ≥ 0 (Marks: 2).
- 7. (a) Let Ω be a bounded region and $f:\overline{\Omega} \to \mathbb{C}$ be a continuous function that is analytic on Ω with |f(z)| = 1 on $\partial\Omega$. If f nowhere vanishes, prove that f is constant (Marks: 3).

(b) Find all analytic functions f for which \overline{f} is also analytic where $\overline{f}(z) = \overline{f(z)}$.